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Introduction

This document is designed to provide information on the meaning of measurement uncertainty, measurement 
models and equations, uncertainty budgets and the application of budgets. This guidance applies for the 
measurement uncertainty developed for the uncertainty claim that is provided to the customer when reporting 
measurement quantity values. The uncertainty provided on the calibration certificate always includes 
contributions from the customer’s device during the test.

This guidance also applies for the measurement uncertainty developed to support the Calibration and 
Measurement Capability (CMC) reported on a scope of accreditation. The CMC estimate will normally be based 
upon the “best existing device” the laboratory can calibrate or test.

In some cases, it may be appropriate to separate the device under test contribution from the other contributors to 
the CMC budget1. See G118 - Guidance for Defining the Scope of Accreditation for Calibration Laboratories for 
more information.

 The Meaning of Uncertainty

Almost everyone makes measurements and almost everyone can ascribe some measure of uncertainty to this 
measurement. If we measure the area of a room by stepping off the length and width, we know that the number 
we get is not as “good” as if we had used a precision tape measure. We also know that if we are measuring the 
diameter of a crankshaft pin, we need a more accurate number than if we are measuring the diameter of a fence 
post to decide how big to dig the hole.

Sometimes we even make uncertainty statements along with our measurements. If asked how good a particular 
measurement is, we may reply “right on” or some other colloquialism. If we know we just guessed, we may say 
“about six inches” or whatever the number was. We also know that sometimes it is economically feasible to use 
better equipment and be more accurate in our measurements. If we are only interested in the approximate 
amount of carpet we need for a room it is okay to step off the dimensions. But if we are buying expensive carpet 
we may want a more accurate number than we would get by stepping off the area. If we use a precision tape, take 
care in making the measurement, and check our arithmetic, we can be confident that we have a number good 
enough for our purpose. That is what uncertainty statements are about – a statement as to the confidence that we 
have in the measured value.

The same reasoning applies for scientific measurements or for measurements made in a calibration or testing 
laboratory. National laboratories have for many years insisted that an uncertainty statement accompany all 
measurements. However, not all laboratories computed the uncertainty in the same manner nor reported the 
uncertainty with the same confidence level. For this reason, the GUM: Guide to the Expression of Uncertainty in 
Measurement was written so that an uncertainty statement made by one laboratory would have same meaning as 
one from any other laboratory.

Measurement Equation

The GUM begins by telling us to describe the measurement problem, generally by writing the equation for 
determining the value we want to find. If it is the volume of a cylinder, for example, we write V = r2h. If it is the 
area of a floor, we write A = L x W. If we were attempting to find the diameter of a cylinder by weighing the 
cylinder, measuring its length, and looking up the density in a handbook, the equation would be a little longer. In 

1 ILAC P14: ILAC Policy for Uncertainty in Calibration

https://a2la.qualtraxcloud.com/ShowDocument.aspx?ID=10225
http://www.bipm.org/en/publications/guides/#gum
http://www.bipm.org/en/publications/guides/#gum
https://ilac.org/publications-and-resources/ilac-policy-series/


Q ID 5658 Only the version displayed in the A2LA intranet is controlled. A2LA confidential document. A2LA Copyright. 
Page 3 of 27

dimensional measurements, if we want the diameter of an object, we measure the diameter; if we want the length, 
we measure the length. 

This makes computing uncertainty values for dimensional measurements much easier than it is for some other 
measurements. If we wish, we can write an equation2 for a dimensional measurement in the form

     (1)
i

iCXY

where Y is the corrected value, X is the measured value, and the Ci are corrections to be added to the measured 
value. It is customary to use small letters in the equation when we are using actual measured values.

For example, the equation for measuring the distance between two points using a tape measure might be written 
as

     (2)21 ccxy 

where y is the corrected length, x is the measured length, c1 is a thermal correction for the tape not being at 20°C, 
and c2 is a correction for the uncertainty in the tape taken from a calibration report.

In most dimensional measurements the equation for determining the desired dimension is so simple that there is 
no real need to write an equation as described in the GUM. 
 
Uncertainty Budgets

An uncertainty budget is a way of documenting the estimate of the uncertainty of a measurement. An uncertainty 
budget can consist of only two columns (see Table 1). In the first column we list the sources of uncertainty, that is, 
those factors that might have caused errors in our measured values. In dimensional metrology some of these 
sources are the uncertainty of the master, repeatability, cosine error, elastic deformation, error caused by the 
temperature not being at the standard temperature of 20°C, errors caused by the test item being at a different 
temperature than the master, an error in the thermometer measuring the room or part temperature, scale errors in 
the measuring instrument, errors due to fixturing, and imperfect geometry of the part. The list should contain all 
quantities that might contribute to the uncertainty of the measured value3. We may find that some (perhaps most) 
of the sources of uncertainty are not significant. As an example, if we are comparing gage blocks of the same 
material the uncertainty due to deformation will be relatively small, but if we were measuring a ball or a plastic 
cylinder, it might not be insignificant. Later, in another uncertainty budget, when we have determined that a 
particular parameter is insignificant, we can then omit it from the budget.

The second column of the uncertainty budget will contain the standard uncertainty of the error source. It is the 
mathematics in the second part that daunts many people,but understanding the measurement process and 
identifying the sources of error is the hardest part in developing an uncertainty budget. The mathematics for 
developing uncertainty budgets for dimensional measurements is easy in most cases.

Distributions

Most people have heard of a normal curve or normal distribution, sometimes called the bell curve. If we take a 
thousand readings of a gage block using a comparator with a resolution of 0.1 microinch and graph the results, 
we will get a bell-shaped curve centered about the mean of the readings. This is a normal distribution. Ninety-five 
percent of the readings will fall within plus-or-minus two standard deviations of the mean.

2 GUM calls this a “mathematical model”.
3 See A2LA R205 - Specific Requirements - Calibration Laboratory Accreditation Program for additional guidance. 

https://a2la.qualtraxcloud.com/Default.aspx?ID=10221
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But not all distributions are normal. If we measure the deviations from nominal for a set of Grade 2 gage blocks, 
the observed curve will not be a normal distribution. This is because the manufacturing process for producing 
gage blocks is to sort the blocks with those meeting Grade 1 requirements labeled Grade 1, and those passing 
Grade 2 labeled as Grade 2, etc. Therefore, the distribution of the graph of the deviations from nominal will show 
few blocks at the center of the graph and more toward the edges. This is called a U distribution.

A digital micrometer that reads to 0.0001in will round the actual number inside the instrument to the nearest 
0.0001 in. If the instrument is capable of reading to 10 µin, we are throwing away the last digit. The last digit that 
we can't see is equally likely to be any number from 0 to 9. This is an example of a rectangular distribution. The 
standard uncertainty is found by dividing half of the resolution by the square root of three. In the example of the 
micrometer with 100 µin resolution the standard uncertainty of the resolution (uRes) is given by 

.ininu  29
3

50
Res 

The triangular distribution is used when it is known that most of the values are likely to be near the center of the 
distribution. The standard uncertainty is found by dividing the half-interval by √6. For example, suppose that the 
lab temperature is controlled by a continuous cooling/variable re-heat system in such a way that the actual 
temperature is always near the center of the range 20°C ± 2°C. The half-interval of the allowed temperature range 

is then 2°C and the standard uncertainty is given by .CCuTemp



82.0

6
2



(If the lab temperature were controlled simply by an on/off air conditioning system, then the U-shaped 
distribution would be more appropriate since the lab temperature is more likely to be near the extremes of the 
allowed temperature range. The divisor for the U distribution is √2 so if this type of environmental control were 

in place we would obtain as the standard uncertainty, using the control limits above, .)CCuTemp



4.1

2
2



The GUM tells us to use the proper distribution if we know the distribution. If the type of distribution is not 
known, the GUM practice is to assume that it is a rectangular distribution. 

Sample Uncertainty Budget for XX Master Setting Plug

Our first sample uncertainty budget is for the measurement of a XX master setting plug and is shown in Table 1. 
The measurement is made by comparing the cylinder to a gage block using a gage block comparator. The 
comparator was in a room maintained at 20°C ± 1°C.

Type A and Type B Estimates of Uncertainty

Note that there is either an A or a B following each source of uncertainty. Type A uncertainty estimates are those 
determined using statistics in the current measurement process. Type B uncertainty estimates are those 
determined by any other means4. For instance, one would usually list the uncertainty due to our lack of 
knowledge of the correct thermal coefficient of expansion of a material as a type B uncertainty estimate since it 
may be obtained from a handbook. However, if, in our measurement process, we measured the part at different 
temperatures, some above and some below 20°C, then it would be a type A uncertainty estimate since it was 
obtained by the statistical evaluation of data.

4 Some people equate type A uncertainty estimates with “random” uncertainties and type B estimates with 
“systematic” uncertainties. This usage is incorrect: “A” and “B” refer to how the estimate was made, not to the 
nature of the uncertainty contributor itself.
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Uncertainty of the Master Gage Block

We are measuring the cylinder by comparing it to a 0.5-inch gage block. We can get the standard uncertainty for 
the gage block from the calibration report. We will use the reported value of the block in computing the difference 
between the block and the cylinder. This reported value has an uncertainty associated with it. It should be 
reported on the calibration certificate as an expanded uncertainty representing approximately a 95% confidence 
level (k=2, or “2 sigma”). To get one standard uncertainty (k=1, or “one sigma”), we take half of the reported 
uncertainty. In our case the reported uncertainty was 4 microinches at the 95% level of confidence so the standard 
uncertainty is 2 microinches.

Repeatability

Repeatability is defined as the closeness of the agreement between the results of successive measurements of the 
same item carried out under the same conditions. Repeatability is one source of uncertainty in our measurement: 
if we have enough resolution in our measuring instrument, and if we take numerous readings, the readings will 
not all be the same. The standard deviation of the readings is used as a measure of repeatability.

In this example, we found the repeatability by zeroing the comparator on the gage block, measuring the plug, and 
repeating the set-up and measuring process 30 times5. 

To get the standard deviation, find the average of the 30 readings. Then list the deviation of each reading from the 
average, square each of these numbers and take the summation of all the squares. Divide the sum of the squares 
by one less than the number of readings, take the square root of the result, and we have the standard deviation. 
Expressed as an equation, “s”, the standard deviation6 is defined as:

     (3) 1

)(
1

2









n

xx
s

n

i
i

The standard deviation of the mean or average value obtained from our 30 readings is obtained by dividing the 
standard deviation by the square root of the number or readings taken.

 
Because we calculated the standard deviation using statistics in the current process, we call it a type “A” 
uncertainty estimate. In our example, we found that the mean standard deviation is 2 in7.

Note: If using a calculator, care should be taken in how the numbers are expressed8. It is often the case that 
calculators cannot correctly evaluate small values of standard deviation.

5 It would not do just to set the comparator once and then retract and release the measuring plunger 30 times. It’s 
important to be aware of what parts of the process the repeatability study is supposed to cover.
6 Sigma () is used for the “population standard deviation” when we have readings from the entire population. 
When we take only a sample of the population, we use s instead of sigma to represent the sample standard 
deviation. Calculators will use the symbol “s” or “n-1” for this function. Microsoft Excel uses the “STDEV” 
function to find the sample standard deviation.
7 UKAS M3003, The Expression of Uncertainty and Confidence in Measurement, 2012, pp. 18-19.
8UKAS M3003, The Expression of Uncertainty and Confidence in Measurement, 2012, pp. 78-79.

nss /
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For example, suppose we try to use a calculator to find the standard deviation of these four numbers: 0.500 000, 
0.500 003, 0.500 007, 0.499 998. The mean of these four numbers is 0.500 002. The correct standard deviation is 
0.000 003 9. But most hand-held calculators will display an error message, or display an incorrect non-zero value, 
or else return 0 as the standard deviation, which is obviously incorrect. (The standard deviation can be zero if and 
only if all of the numbers in the data set are the same.)

If we examine the equation for the standard deviation, we can see how these errors result. Each data point is first 
subtracted from the mean. Each of these differences can be quite small. For example (0.500 002 – 0.500 000) = 0.000 
002, which is then squared. In this example, the square of the difference is 0.000000000004, which is beyond the 
internal resolution of most calculators. 

The solution to this problem is to use only the last few significant figures in the data set. For example, we could 
have written those four numbers as 0x10-6, 3x10-6, 7x10-6, -2x10-6 after subtracting 0.5. Ignoring the “x10-6” for the 
moment, we can write the data set as 0, 3, 7, -2. A hand-held calculator will now be able to return the correct 
standard deviation of 3.9(x10-6).

 
Computers and spreadsheet programs are not immune from this effect so suitable checks should be devised to 
look for any such effects when using spreadsheets.

Scale Error

The comparator used to make the comparison between the gage block and the gage may have a scale error. By 
looking at the calibration records for the comparator, we see that the largest error at recalibration was five percent 
over the usable range. We will use this uncertainty budget for all 0.5 in plug gages that we measure on this 
instrument so we estimate the maximum deviation we might see between the block and the gage. A XX plug gage 
is unlikely to deviate more than 40 microinches from the gage block, so we will consider 40 in as the worst case 
deviation. Five percent of the worst case reading gives a worst case error due to scale error of 2 in. We now need 
to convert the worst case deviation to one standard uncertainty. If we know something about the distribution, 
there are formulas to make the conversion. The usual practice if we know nothing about the distribution is to 
consider it a rectangular distribution and divide by the square root of 3 to get one standard uncertainty. In our 
case, 2 divided by the square root of three gives about 1.2 microinches.

Elastic Deformation

We are using a single probe indicator with the force of the probe set at two ounces (approximately 0.5 N). Because 
we are using a steel gage block to measure a steel cylinder, the elastic constants will be nearly the same, but there 
is a slight difference between a ball to a flat and a ball to a cylinder. We can calculate the difference using the 
equations given in the paper by Puttock and Thwaite (see References). The equations show that the difference is a 
negligible amount of about 0.1 in. We’ll treat this as a rectangular distribution and divide by 3 to obtain the 
standard uncertainty of 0.06 in.

Force Setting

We are using a single probe indicator with the probe setting at a nominal two ounces. The actual setting may be 
off. An examination of our records shows that at recalibration it has never differed more than 10% from the 
nominal value so we can use this as the worst case. Changing the force by 10% does not change the elastic 
deformation correction significantly so we list 0 as the uncertainty due to the error in the force setting. (This is 
true because the gage block and the gage are made of the same material; it would not necessarily be true if the 
gage block and cylinder were made of different materials.)

Effects of Temperature
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There are two possible sources of error related to temperature. The room may not be at exactly the standard 
temperature for dimensional measurements (20°C). If the master and the test have different coefficients of 
thermal expansion and no corrections are made, an error will result. It is also likely that the master and the test 
are not at exactly the same temperature, which is another source of error.

Coefficient of Thermal Expansion

We stated that the laboratory is maintained at 20°C 1°C. However, the thermometer doesn’t measure the 
temperature exactly so there is some uncertainty about the temperature indicated by the thermometer. Assuming 
the room thermometer is good to 0.1°C, the temperature of the room could be anywhere between 18.9C and 
21.1°C. If the block and cylinder are at exactly the same temperature, the temperature could deviate from the 
standard 20°C by 1.1°C. 

Coefficients of thermal expansion are not known exactly. Even when the master and the test item are both steel 
and both are at the same temperature, possible differences in the thermal coefficient of expansion can cause 
uncertainties in the measurement. It is reasonable to assume a difference in coefficients of expansion of 1.5 
ppm/°C between the steel in the master and the steel in the test gage. If the master and test were 1.1°C from 
nominal, the maximum error would be:

     (4) TLL

where L is the error in length, L is the nominal length, T is the deviation from 20°C, and  is the difference 
between the coefficients of expansion of the cylinder and the coefficient of expansion of the gage block. For a 0.5-
inch interval, we have L = (0.5 in)(1.1°C)(1.5 ppm /°C) or 0.82 in.

It is unlikely the worst case will always happen so we will treat it as a rectangular distribution and divide by the 
square root of three to get 0.48 microinch as the standard uncertainty caused by errors due to uncertainty in the 
coefficient of thermal expansion.

Differences in Temperature

In this case the operator wore gloves, we did not measure the temperature, and the difference in temperature 
between the master and test gages was estimated not to exceed 0.1°C. If there is a difference in temperature of 
0.1°C between the master and the test gages, it will cause an error of (see equation 4) L = (0.5 in)(0.1°C)(11.5 
ppm/°C) = 0.58 microinch.

We will again assume a rectangular distribution9 and divide by the square root of three to get a standard 
uncertainty of 0.33 microinch.

Table 1. Uncertainty Budget for 0.5-inch XX Plain Plug Gage

9 We could also have used a triangular distribution here. The most likely value for the difference in temperature 
between the master and test gages is 0. The least likely, but still possible, is  the allowed temperature variation in 
the room (i.e., one part is as hot as the room gets, the other part is as cold as the room gets). In a situation like this, 
the lab can allow for large temperature differences while noting quantitatively that large differences don’t happen 
very often by using the triangular distribution. Assuming a triangular distribution in this case yields a standard 
uncertainty of 0.24 in (0.58 in/6) and a final expanded uncertainty of 6 in so, in this case, assuming a 
triangular or rectangular distribution makes no difference to the final answer. The issue is a philosophical one 
having to do with different engineering judgements and opinions on how best to handle the statistics of 
temperature effects.
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Source of Uncertainty Standard Uncertainty 
(µin)

Master gage block uncertainty (B) 2.0

Repeatability (A) 2.0

Scale error (B) 1.2

Elastic deformation (B) 0.06

Force setting (B) 0

Coefficient of thermal expansion (B) 0.48

Part and master temperature difference 
(B)

0.33

Combined standard uncertainty:
222222 33.048.006.02.122 cu

3.13

Expanded uncertainty, U = 2uc (k=2) 6.26

The uncertainty estimate of 6.26 in represents an expanded uncertainty expressed at approximately the 95% 
level of confidence using a coverage factor of k = 2. It is standard practice to round uncertainty estimates up, so 
most practitioners would round the estimate of 6.26 in to 7 in instead of to 6 in. In no case is it appropriate to 
report uncertainty estimates to more than two significant figures. (However, one should retain extra significant 
figures in intermediate calculations so as to minimize round-off errors.)

An examination of the uncertainty budget shows that the dominant sources of uncertainty are the uncertainty of 
the master gage block and the repeatability. Having better temperature control would not help much. 

Sample Uncertainty Budget for a 0.5-Inch Plain Ring Gage

A sample uncertainty budget for the measurement of a 0.5 in plain ring gage is shown in Table 2.

In our second example of an uncertainty budget, we have changed the format of the budget by adding additional 
columns. We gave the type of uncertainty estimate (A or B) in a separate column instead of in parentheses after 
the source of uncertainty, we have added the type of distribution, and we have added a column called “variance”, 
which is just the standard uncertainty estimate squared. In order to calculate the combined standard uncertainty, 
uc, it is necessary to square each number; therefore, it requires no additional work to list the squared value in a 
column. By looking at the variance, it is easy to see the sources of uncertainty that dominate the uncertainty 
budget.

We have the same sources of uncertainty as we had for the plug gage in Table 1, except we added probe 
misalignment as a potential additional error source. We have changed the temperature from Celsius to Fahrenheit 
as that was the common way of expressing the temperature in this particular laboratory.

The measurements were taken in a laboratory maintained at 68°F  2°F. The uncertainty in the measurement of 
the temperature was 0.2°F. The measurements were made by comparing the ring to a stack of gage blocks (with 
end caps) using a comparator-type instrument. The gages were allowed to stabilize to reach temperature 
equilibrium. We estimate that the master and the part do not differ in temperature by more than 0.2°F.
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Gage Blocks

The 5 in in the outer limit column for gage blocks came from the calibration report. We used the actual reported 
value of the blocks to set the internal comparator. The estimated uncertainty given on the calibration report at a 
95% confidence level (k=2) was 5 in. To get one standard uncertainty, we divided by two to get 2.5 in.

Repeatability  

The repeatability was estimated from the standard deviation of 30 readings obtained by repeating the complete 
set-up and measuring procedure 30 times. 

Uncertainty in Coefficient of Thermal Expansion   

The uncertainty caused by the temperature not being at exactly 68°F and our lack of knowledge about the 
coefficient of thermal expansion (CTE) was computed using equation 4: 

L = (0.5 in)(2.2°F)(0.9 ppm/°F), or 0.99 microinch.

Uncertainty Caused by Test Part and Master Being at Different Temperatures

The uncertainty caused by the part and the master not being at the same temperature was computed using 
equation 4: 

L = (0.5 in)(0.2°F)(6.5 ppm/°F), or 0.65 microinch.

Probe Misalignment  

If both probes are not in line with the axis of measurement, a ring will measure smaller than it would otherwise. 
The error is larger for a small ring and becomes almost insignificant as the rings get over an inch in diameter. 
Discussions with NIST personnel and instrument manufacturers indicate that a worst-case estimate of the error 
due to probe misalignment is 2 in for a 0.5 inch ring gage. To convert the worst-case error to one standard 
uncertainty, we assume a rectangular distribution and divide by the square root of three.

Comparator Calibration

The history of the calibration for the comparator showed the worst-case error to be 3% of full scale. The gage 
block will always be within 100 microinches of the ring so the worst-case error would be 3 microinches.

The uncertainty for the measurement of the 0.5 in ring gage is 8 in, which represents an expanded uncertainty 
expressed at approximately the 95% level of confidence using a coverage factor of k=2.

By looking at the variance column, we can see that the gage blocks are the largest contributor to the uncertainty.  
We can lower the uncertainty by having the blocks calibrated by a laboratory giving a lower uncertainty.

The temperature is relatively unimportant for a 0.5 inch ring but let us do another uncertainty budget for a 10-
inch ring under the same conditions (see Table 3).
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Table 2. Uncertainty Budget for 0.5 in Plain Ring Gage

Uncertainty Source
Estimate 

(in)
Type Distribution Divisor

Standard 
Uncertainty

(µin)

Variance 
(µin2)

Gage blocks 5 B Normal 2 2.5 6.25

Repeatability 1.8 A Normal 1 1.8 3.24

Uncertainty of CTE 0.99 B Rectangular 3 0.57 0.32

Master/part 
temperature 
difference

0.65 B Rectangular 3 0.38 0.14

Probe misalignment 2 B Rectangular 3 1.15 1.32

Comparator 
calibration

3 B Rectangular 3 1.73 3

Sum of the variances 14.27
Combined standard 
uncertainty (uc, equal 
to the square root of 
the sum of the 
variances)

3.78

Expanded 
Uncertainty U (= 2uc; 
k=2)

7.56  8

The uncertainty of the gage blocks is larger as expected; the repeatability is also larger as might be expected, but 
the largest increase is in temperature effects. Both terms related to temperature increase by a factor of 20. The 
uncertainty is directly proportional to the diameter of the ring. The dominant source of uncertainty is now the 
uncertainty of the coefficient of thermal expansion.
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Table 3. Uncertainty Budget for10 inch Plain Ring Gage

Uncertainty Source
Estimate 

(in)
Type Distribution Divisor

Standard 
Uncertainty (µin)

Variance 
(µin2)

Gage Blocks 10 B Normal 2 5 25

Repeatability 3.2 A Normal 1 3.2 10.24
Uncertainty of CTE 20.0 B Rectangular 3 11.5 132.2
Master/part 
temperature 
difference

3.25 B Rectangular 3 1.88 3.52

Probe misalignment 0.5 B Rect 3 0.29 0.08

Comparator 
calibration

3 B Rect 3 1.73 3

Sum of the variances 174.04
Combined standard 
uncertainty

13.19

Expanded 
Uncertainty U (k=2)

26.39  27

The uncertainty for the measurement of the 10 in ring gage is 27 in, which represents an expanded uncertainty 
expressed at approximately the 95% level of confidence using a coverage factor of k=2.

Measurement Uncertainty Expressed as a Function of Length

To express the measurement uncertainty for ring gages from 0.125 in up to 10 in, we would have to divide up the 
rings into different categories based on the size of the rings, each category having the same measurement 
uncertainty. Alternatively, we could state the uncertainty in the form of a single equation that describes the 
measurement uncertainty over the entire range. That is, if the function is nearly linear, it is simpler to put it in the 
form of an equation: 

U = b + mL.     (5)

This is just the equation of a straight line where b is the y intercept (the point where the line intercepts the y-axis), 
and m is the slope of the line.

For example, the best uncertainty for a 0.5-in ring was found to be 8 in and the best uncertainty for a 10-in ring 
was found to be 27 in. This information gives us two points on a straight line (L1=0.5 in, U1=8 in; L2=10 in, U2=27 
in). This can be expressed in the form of an equation for the rings in the range (0.5 to 10) inches as U = (7 + 2L) 
in where L is the nominal diameter of the ring in inches10. This linear approximation works only between the 
two end points; if we try to apply the equation to points outside of the range (in this example, [0.5 to 10 in]), we 
will end up underestimating the uncertainty.

10 If L1 is the lower end of the length range and U1 is the uncertainty at L1, and if L2 is the upper end of the length range and 

U2 is the uncertainty at L2 so that U1<U2 and L1<L2, then the constants m and b are  and 
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Indicating Measuring Instruments

Unlike gage blocks, rings, and other dimensional gauges, micrometers and calipers provide direct measurement 
indication. The repeatability and resolution of such instruments are not inherent components of the calibration 
process but of the measuring instrument itself. 

Sample Uncertainty Budget for a (0 to 36) Inch Micrometer

The measurements were made in a laboratory controlled to 20°C  2°C. The thermometer that measures the room 
temperature has an uncertainty of 0.25°C. The comparison was made by measuring gage blocks.

Master Values

For this measurement we used B89 Grade 0 blocks. We did not correct for the measured values of the blocks. We 
only know that the blocks were within tolerance. We took as the uncertainty the root sum square of the tolerance 
for 3 Grade 0, 12-inch blocks (28 microinches), which gives an uncertainty of 49 in. We treat this as a rectangular 
distribution and divide by the square root of three to get a standard uncertainty of about 28 in.

Resolution

The resolution of the digital micrometer is 100 microinches. To obtain the standard uncertainty we divide the 
resolution by two and then by the square root of three, or 100/23 = 29 

Repeatability

The repeatability was computed from six readings taken on a gage block combination consisting of three 12-inch 
gage blocks fastened together with tie rods. The blocks were taken apart and rewrung between each reading. The 
standard deviation for the repeatability on the 36-inch combination was 620 microinches.

We have added a column to the table labeled “degrees of freedom.” The number of degrees of freedom is an 
indication of how much information an uncertainty estimate is based on. The larger the number of degrees of 
freedom, the more information was available. For an uncertainty estimate taken as the standard deviation of n 
measurements, the number of degrees of freedom is n – 1 (which, not coincidentally, is also the denominator in 
the formula for the standard deviation). When the number of degrees of freedom is small, as in this case (n – 1 = 
5), we can’t use a coverage factor k = 2. We refer instead to the “t table” (see Appendix A) to find out which 
coverage factor to use at a given level of confidence. In this example, we have 5 degrees of freedom and the 
coverage factor at the 95% level of confidence is k = 2.57.

It is customary to take the number of degrees of freedom associated with a type B uncertainty estimate as 
“infinity”. When using spreadsheets, some large number such as 100 or 1000 is used to represent infinity.

Temperature

The room is maintained at 20°C  2°C. Assuming the room thermometer is good to  0.25°C, the room 
temperature could be anywhere between 17.75C and 22.25°C. It is also possible that the block and the 
micrometer may not be at the same temperature. All three factors can contribute to the uncertainty of the 
calibration. In our case the operator wore gloves, we did not measure the temperature, and the difference in 
temperature between the block and the micrometer was estimated not to exceed 0.5°C.

If the blocks and micrometer are at the same temperature, the temperature could deviate from the standard 20°C 
by 2.25°C. Even when both are at the same temperature, possible differences in the thermal coefficient of 
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expansion can cause uncertainties in the measurement. It is reasonable to assume a difference in coefficient of 
expansion of 1.5 x 10-6/°C between the steel in the gage block and the steel in the micrometer. If the block and 
micrometer were 2.25°C from nominal, the maximum error would be L = (36)(2.25)(1.5)(10-6) or 122 microinches.

If the micrometer is as much as 0.5°C warmer than the gage block stack, then the possible error could be L = 
(36)(0.5)(11.5)(10-6) or 207 microinches. But it is unlikely the worst case will always happen so we will treat both of 
the above as a rectangular distribution and divide by the square root of three to get one standard uncertainty.

Table 4. Uncertainty Budget for Calibrating a (0 to 36) Inch Micrometer

Uncertainty 
Source

Estimate 
(in)

Degrees 
of

Freedom 
i

Type Distribution Divisor
Standard 

Uncertainty
(µin)

Variance 
µin2

Gage Blocks 49  B Rectangular 3 28.3 801

Resolution 100 ∞ B Rectangular 23 28.9 835

Repeatability 620 5 A Normal 1 620 384400

Uncertainty of
coefficient of 
thermal 
expansion

122  B Rectangular 3 70.4 4956

Master/part 
temperature 
difference

207  B Rectangular 3 119.5 14280

Summation 405272

Combined 
standard 
uncertainty, uc

636.6

Expanded 
Uncertainty,
U = 2.57uc

 1700

For the purposes of CMC, it is acceptable to separate out the device contribution. In this case, separating out the 
resolution contribution would not be advisable since the resolution is a minor contributor to the overall 
uncertainty of the measurement.

If we want to develop an equation for all micrometers, we can develop an uncertainty budget for a 0 – 1 in 
micrometer, assume the equation is linear between 1 and 36 inches, and write an equation in the form of U = a + 
bL. The typical uncertainty for a (0 to 1) in micrometer is about 70 microinches so the equation might be U = (26 + 
44L) in.

Sample Uncertainty Budget for a (0 to 6) Inch Digital Caliper 

The caliper was calibrated using gage blocks in a room controlled to 5ºF. The caliper reads to the nearest 0.0005 
inch. It was estimated that the temperature of the caliper and gage blocks did not differ by more than 1.0ºF.

Gage Blocks
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We did not use the actual values of the gage blocks; we only assumed they were within B89 Grade 0 tolerance. 
Our worst-case error is the tolerance of Grade 0 blocks (16 in).

Repeatability vs. Resolution

Repeatability is defined as the closeness of the agreement between the results of successive measurements of the 
same item carried out under the same conditions. If we have enough resolution in our measuring instrument, and 
if we take numerous readings, the readings will not all be the same. Resolution is defined as the smallest 
increment that can be detected by the instrument.

We measured the repeatability of the (0 to 6) inch caliper by taking 31 readings and got a standard deviation of 
0.00012 inch (120 microinches).

The resolution of the instrument is one half of the least count of the instrument. Dividing by the square root of 
three gives us one standard uncertainty. That is, the standard uncertainty is 500/(23), which equals 144 
microinches. The instrument cannot read any better than the resolution. 

It is common practice11 to take the larger of the repeatability or the resolution for the budget. However, in this 
case the contributors are approximately equal in size and, both should be included. 

Uncertainty in Coefficient of Thermal Expansion

The uncertainty caused by the temperature not being at exactly 68°F and our lack of knowledge about the 
coefficient of thermal expansion was computed using equation 4:

L = (6 in) (5.0°F) (0.9 x 10-6 /°F)  27 microinches.

Uncertainty Caused by Test Part and Master Being at Different Temperatures

The uncertainty caused by the part and the master not being at the same temperature was computed using 
equation 4: 

L = (6 in) (1.0°F) (6.5 x 10-6 /°F)  39 microinches.

The dominant component in this uncertainty budget is the resolution. If resolution is the only significant 
contribution to the budget, the expanded uncertainty for digital instruments may be reported as U = 0.6R, or U = 
R/3, where R is the resolution (however, see the section below titled “When k Does Not Equal 2”) 

For cases when the uncertainty budget is developed to support the CMC claims on a scope, it may be appropriate 
to separately identify instrument-particular uncertainty components such as resolution that dominate the 
budget12 ,13. 

11 See, for example, ISO/TS 14253-2
12 ILAC P14: ILAC Policy for Uncertainty in Calibration
13 M3003, The Expression of Uncertainty and Confidence in Measurement, 2007, p. 31. 

https://ilac.org/publications-and-resources/ilac-policy-series/
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Table 5. Uncertainty Budget for Calibrating (0 to 6) Digital Caliper

Uncertainty 
Source

Estimate
(in)

Degrees 
of

Freedom
Type Distribution Divisor

Standard 
Uncertainty 

(in)

Variance 
(µin2)

Gage Blocks 16  B Rectangular 3 9.24 85.4

Resolution 500  B Rectangular 23 144 20736

Repeatability 120 30 A Normal 1 120 14400

Uncertainty of 
CTE 

27  B Rectangular 3 15.6 243

Master/part 
temperature 
difference

39  B Rectangular 3 22.5 506

Summation 35970

Combined 
standard 
uncertainty, uc

190

Expanded 
Uncertainty, U 
= 2uc

380 400

Sensitivity Coefficients

The GUM tells us to write the equation to determine the measurand (the quantity we want) in relation to the 
variables that may affect the measurement. We stated earlier that in most cases it is not necessary to write this 
equation. This is not always the case, however. We will give one example where it is necessary to express the 
equation to obtain the measurand.

The pitch diameter of a thread gage is defined as the diameter of the cylinder that divides the thread and thread 
spacing into equal parts. The pitch diameter is measured by placing three (sometimes two) wires in the thread 
groves, choosing wires that touch near the pitch diameter cylinder. The measurement is made by measuring over 
the wires and subtracting a “C” correction to obtain the pitch diameter. The equation for finding the pitch 
diameter is:

     (6)   





   cot

2
csc1 PwMPD w

where Mw is the measurement over the wires,  is the half angle, P is the pitch and w is the mean diameter of the 
wires.

It is customary to use “best-size” wires (those that touch at the pitch line) and to assume the half angle and pitch 
are nominal values. For a 10 pitch 60-degree thread, the equation becomes

   





  3

2
1.021wMPD w

 086603.03  wMPD w
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The term (3w to 0.086603) is the “C” correction; it is the value to be subtracted from the measurement over the 
wires to get the pitch diameter. The “C” correction number is placed on the set of calibrated thread wires.

In our uncertainty budget we want to know how much the uncertainty of the diameter of the wires contributes to 
the total pitch diameter uncertainty. It is obvious in this case that a change of one microinch in the wire diameter 
will cause a change in the pitch diameter of three microinches. The “3” is called the sensitivity coefficient; it is the 
multiplier of the input quantity that will cause a change in the output quantity (pitch diameter in our case).

In some cases the input quantity that causes a change in the output quantity may not be in the same units as the 
output quantity. In that case the sensitivity coefficient will be a term that we multiply the input quantity by to get 
the correct units. An example is the change in length caused by a change in temperature. In a previous example, 
we calculated the change in the text accompanying the budget to get the value to put in the budget. The GUM 
tells us to get the sensitivity coefficient by taking the partial derivative of the equation modeling the measurement 
process. An easier way to determine the sensitivity coefficient is by numerical analysis, that is, we change the 
input variable a small amount and observe how much the output variable changes.

We will examine an uncertainty budget for a pitch diameter measurement. It is an example where it is obvious 
that if you change the input variable (mean wire diameter) one microinch, it will cause a change in the output 
variable (pitch diameter) of three microinches.

Sample Uncertainty Budget for the Measurement of Thread Pitch Diameter

Introduction

In this example we will develop an uncertainty budget to calculate the uncertainty of the measured value of the 
pitch diameter of a Class W 2½-10 UNC master external thread gage. The measurements were made in a 
temperature-controlled room using a measuring machine with resolution of one microinch to compare a gage 
block to the “measurement-over-wires” of the plug gage. The measurements were made in a room controlled to 
20°C  1.0°C.

Method

The pitch diameter was measured as specified in the ASME B1.2 Standard. 

Repeatability

In this example, 30 readings were taken to get a value for the repeatability of the measurement by going through 
the complete set-up and measuring process 30 times. The calculated standard deviation of the 30 readings was 16 
microinches. Because this value was obtained by statistical means during the measurement process, the value is 
listed as a type A uncertainty estimate.

Uncertainty in “C” Correction

The uncertainty for the set of calibrated thread wires is 20 microinches. The 20 microinches was taken from a 
calibration certificate that gave the uncertainty at the 95 percent confidence level (k=2). One standard uncertainty 
equals 10 microinches. The pitch diameter is calculated from the equation

PD = Mw – “C” correction.
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The “C” correction equals (3w – 0.086603). The uncertainty in the “C” correction is three times the uncertainty in 
the wire diameter when measuring the pitch diameter of 60-degree threads; therefore, the uncertainty due to the 
wires is 30 microinches. 

Scale Error

We are not using any corrections from the calibration report for the scale on the machine used to make the 
measurements. We only know that the worst value for the scale error is 20 microinches. We assume a rectangular 
distribution; that is, the error is equally likely to be any value between 0 and 20 in. We divide by 3 to convert a 
rectangular distribution to one standard uncertainty.

Note: Most likely, the scale error is a linear function increasing with the length. If the machine 
calibration had given a graph showing the errors at each position, the measurement could have 
been corrected for the machine error. The uncertainty due to the scale would have been less than 
we are using in this uncertainty budget. 

We could have eliminated most of the scale error by using a gage block combination the same size as the 
“measurement over wires” value.

Error in Force Setting

The Appendix in the ASME B1.2 Standard that describes how to measure pitch diameter states the force should 
be within 10% of the specified value. The machine has been calibrated and the force was checked at that time. We 
will assume the force is within 10% of the correct value when measuring the pitch diameter. We calculate the 
difference between the wire deformation at a 2.25 lb. force and a 2.75 lb. force as 6.1 in using the Hertzian 
equations given in the Puttock and Thwaite paper, Elastic Compression of Spheres and Cylinders at Point and Line 
Contact (see References). Again we assume a rectangular distribution; we assume the force is equally likely to be 
any value between 2.25 and 2.75 pounds and we divided 6.1 in by 3 to get 3.5 in for one standard uncertainty.

Errors Due to Temperature

The coefficient of thermal expansion () of steel is approximately 11.5 x 10-6/°C. If we assume the thread gage is 
the same temperature as the measuring machine and gage block, the change in diameter of the gage due to 
temperature would be the nominal diameter times the difference between the coefficients of thermal expansion of 
the scale and the gage, times the room deviation from the nominal 20°C, or

L = (2.5 in)(1.0°C)(3.5 x 10-6 /°C) = 8.8 in.

We estimated that the difference in the coefficient of thermal expansion between the scale and the gage could be 
as large as 3.5 x 10-6/°C. The temperature may be anywhere between 19C and 21C so we assume a rectangular 
distribution and divide by 3 to get one standard uncertainty of 5.05 microinches.

Note: The uncertainty due to the error in the thermometer of  0.02C degrees is considered to be 
insignificant.

The above is assuming the gages are the same temperature as the machine. However, it is more reasonable to 
assume that, due to handling, the gages might be as much as 0.25°C apart. A 0.25°C variation would cause an 
error of 7.2 in, which, if we again assume a rectangular distribution, gives 4.2 in for the standard uncertainty.

L = (2.5 in)(0.25°C)(11.5 x 10-6 /°C) = 7.2 in.
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Parallelism of the Anvils

The calibration report states that the out-of-parallelism of the anvils of the machine does not exceed 10 in. 
Because we are measuring in the center of the anvils, we assume that the contribution from the anvils will not 
cause an error greater than half the maximum amount (5 in). The actual parallelism may be any value between 0 
and 10 in, so we assume a rectangular distribution and divide 5 in by 3 to get one standard uncertainty.

Error Caused by Assuming Half Angle and Pitch are Nominal

Because we used the best wire size to get the pitch diameter, there is no correction due to errors in the half angle. 
The specifications for the allowable deviation from nominal pitch for a Class W gage of this size is 0.0002 in. A 
change of one unit in the pitch, P, causes a change of 0.866 units in the pitch diameter. The actual error in pitch 
may be anywhere between 0.0002 in of nominal. Experience has shown that the error in pitch (between any two 
threads) is usually much less than the total pitch error. We will estimate it to be no more than one half of the total 
pitch error or 100 in, which when multiplied by the sensitivity coefficient gives 87 in. We will assume a normal 
distribution with all errors lying within the three-sigma limit. We then divide by 3 to obtain the standard 
uncertainty of 29 in. 

Table 6. Budget for Pitch Diameter Measurement of 2.5 in External Master Thread Gage

Source of 
Uncertainty

Estimate
(in)

Type
Degrees 

of 
Freedom

Distribution Divisor
Sensitivity 
Coefficient

Standard
Uncertainty 

(µin)

Variance 
(µin2)

Repeatability 16 A 29 N 1 1 16 256
“C” 
correction

20 B  N 2 3 30 900

Scale error 20 B  R 3 1 11.5 132
Force setting 6.1 B  R 3 1 3.5 12
Uncertainty 
in CTE 

8.8 B  R 3 1 5.1 26

Part/master 
temperature 
difference

7.2 B  R 3 1 4.2 18

Parallelism of 
anvils 

5 B  R 3 1 2.9 8.4

Error due to 
assuming 
pitch is 
within 
tolerance

100 B  N 3 0.87 29 841

Summation 2193

Combined 
standard 
uncertainty uc

47

Expanded 
uncertainty,
U = 2uc

94

Sample Uncertainty Budget for the Major Diameter of a 20 Inch External Thread Gage
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Table 7 shows a sample uncertainty budget for the measurement of the major diameter of a 20-inch external 
thread gage. The gage was measured using a measuring machine in a room controlled to 20°C  2°C. The 
maximum temperature difference between the part and gage block used to set the measuring machine was 0.2°C.

Repeatability

The repeatability was determined from 20 readings taken on the gage.

Gage Block

The machine was set with a 20 in gage block and the reading was corrected for the reported deviation of the block 
from the 20 in nominal. The value was taken from the calibration report.

Scale Error

The maximum uncertainty of the scale was taken from the calibration report of the measuring machine.

Force Setting

While the force setting is important in pitch diameter measurements, the effect is negligible for a major diameter 
measurement.

Uncertainty in the Coefficient of Expansion

In previous examples we listed the calculation in the text with the equation

L = L  T  ,

where L is the nominal length, T is the tolerance for the room temperature, and  is an estimate of the possible 
difference in the thermal coefficients of expansion between the master and the test item. Our estimate is , so 
the sensitivity coefficient is L  T, or 40 µin°C. 

We can put this information in the uncertainty budget without any text if we include the sensitivity coefficient as 
we have done in Table 7.

Part/Master Temperature Difference

For this uncertainty component of the budget, in previous examples we used the equation

L = L  T  

where T is the possible difference in the temperature between the part and the master. Our estimate is T, so the 
sensitivity coefficient is L  , or 230 µin/°C. We can put this information in the uncertainty budget without any 
text if we include the sensitivity coefficient as we have done in Table 7.
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Parallelism of Anvils

The possible error due to the parallelism of the anvils is the same as it was for pitch diameter. In this case it is not 
a significant contributor to the expanded uncertainty.Table 7. Budget for Major Diameter Measurement of 

20-Inch External Master Thread Gage

Source of 
Uncertainty

Estimate Type Distribution
Degrees 

of 
Freedom

Divisor
Sensitivity 
coefficient

Standard
Uncertainty 

(µin)

Variance
(µin2)

Repeatability 100 in A N 19 1 1 100 10000

Gage block 20 in B N  2 1 10 100

Scale error 20 in B R  3 1 11.5 132

Force setting 0 B R  3 1 0 0

Uncertainty in CTE 1.5/°C B R  3 40 µin°C 34.6 1197

Part/master 
temperature 
difference

0.2°C B R  3 230 µin/°C 26.6 708

Parallelism of 
anvils 

5 in B R  3 1 2.89 8

Summation 12145

Combined standard 
uncertainty (uc)

110

Expanded 
uncertainty U = 2uc

220

We could also have obtained the standard uncertainty for the temperature effects in the same manner as we have 
done in previous uncertainty budgets.

Sample Uncertainty Budget for the Calibration of an Autocollimator

In Table 8 we show an uncertainty budget for the calibration of an autocollimator. An autocollimator with a range 
of 10 minutes is calibrated by placing a mirror on a 10-inch sine plate and comparing the autocollimator readings 
to the angles set by the sine plate. Among other things, the uncertainty of the measurements is a function of how 
well we know the spacing between the rolls of the sine plate, l, and how well we know the length of the gage 
blocks, x, used to set the angle.

Repeatability

As shown in the budget, the repeatability was obtained by taking the standard deviation of 30 independent 
readings.

Gage Blocks

The value of the gage block combination is known to within 5 in. The effect on the angle was found by 
computing the sensitivity coefficient (the partial derivative of the angle with respect to the gage block stack, 

/x). It is computed from the equation sin() = x/l, or  = sin-1(x/l). The sensitivity coefficient is . 
22

1

xlx 
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The estimate of the uncertainty is divided by 3, then multiplied by the sensitivity coefficient to get the standard 
uncertainty. We also divide by 4.85 to convert from microradians to seconds.

Sine Plate Length

The uncertainty in the angle generated with a sine plate is caused by uncertainty in the height of the gage block 
stack we just examined and also by uncertainty in the length or the sine plate itself. The uncertainty in the length 
of the 10-inch plate is specified to be 200 in. The effect on the angle was found by computing the sensitivity 
coefficient (the partial derivative of the angle with respect to the sine plate length, /l). It is computed from the 
equation sin() = x/l, or  = sin-1(x/l) where x is the height of the gage blocks and l is the length of the sine plate. 

The sensitivity coefficient is . The estimate of the uncertainty is divided by 3 then multiplied by 
22 xll

x
l 







the sensitivity coefficient to get the standard uncertainty. We also divide by 4.85 to convert from microradians to 
seconds.

Estimating Sensitivity Coefficients

The GUM allows for alternative methods to estimate sensitivity values. For example, instead of taking partial 
derivatives, the measurement equation for angle [ = sin-1(x/l)] could be solved for a particular gage block height, 
x and then solved for x+5in. l would be 10 inches in both calculations. The difference between the two 
calculations is the uncertainty in angle caused by the gage block uncertainty. A similar set of calculations could 
then be performed for l=10 inches and then for l=10.0002 inches, with the same x value used for both calculations. 
The difference is the uncertainty in angle caused by the sine plate length uncertainty.

Alternatively, a table of sine plate “constants” could be used to find the change in gage block height needed to 
cause a change of one minute (60”) at the nominal angle. The height change should be converted to microinches 
and the sensitivity in seconds per inch can be calculated. (See Appendix B.)

Other analytical and approximation methods could be used. Unfortunately, for this budget, somewhat 
complicated calculations cannot be avoided. No matter what approach is used to determine sensitivity 
coefficients, it is necessary to very carefully to keep track of units.

For illustration, the budget in Table 8 has equations shown in the table. The calculations were made for a nominal 
angle of 10 minutes of arc. 

Geometry

The table does not have perfect geometry. A worst case error of 0.1 second was estimated due to imperfect 
geometry of the table.

Temperature

Even though the temperature may vary from the nominal 20ºC, a uniform change in the temperature will not 
change the angle.
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Table 8. Uncertainty Budget for Measurement of an Autocollimator

Source of 
Uncertainty

Estimate Type DOF Distribution Divisor
Sensitivity 
coefficient

Standard
Uncertainty 

(sec)

Variance 
µ2

Repeatability 0.1 sec A 29 N 1 1 0.1 0.01

Uncertainty in 
gage block 
combination

5 µin B  R 3 2285.4

1

xl 
0.1 0.01

Sine plate 
length

200 µin B  R 3   2285.4 xll
x

 0.01 0.0001

Geometry of 
table

0.2 sec B  R 3 1 0.12 0.01

Temperature 2°C B  R 3 0 0 0

Summation
0.0301 
sec2

Combined 
standard 
uncertainty 
(uc)

0.17 sec

Expanded 
uncertainty U 
(k=2)

0.35 sec

A difference in this uncertainty budget from previous ones is that the change in angle caused by a change in the 
length of the sine plate is not linear. For small angles, the uncertainty caused by not exactly knowing the distance 
of the bar is negligible. At 45 degrees, the same uncertainty in the length of the sine plate would cause an error of 
4 seconds in the angle. If done numerically, it is necessary to calculate the sensitivity coefficient for each angle 
measured when using a sine plate. 

When k Does Not Equal 2

In most cases we report the uncertainty at the 95% confidence level using a coverage factor of k=2, but this 
assumes a normal distribution. If we combine several rectangular distributions, the result approaches a normal 
distribution. But when we have an uncertainty budget that contains only one source, and it is a rectangular 
distribution, then for a 95% confidence level, the coverage factor is less than 2.

The Student’s t-table shown in Appendix F applies only to a normal distribution. By contrast, if the standard 
uncertainty is described by a rectangular distribution, as in this example, with standard deviation  = a/3, where 
a is the half-width of the distribution, then the level of confidence p is 57.75% for kp=1; 95% for kp =1.65; 99% for kp 
=1.71; and 100% for kp = 3  1.73. The rectangular distribution is “narrower” than the normal distribution in the 
sense that it is of finite extent and has no “tails”.

Sample Uncertainty Budget for the Calibration of a One Inch Micrometer

The case of calibrating a (0 to 1) inch digital micrometer illustrates this situation. The dominant source of the 
uncertainty is the resolution which is a rectangular distribution. The measurements were made using Grade 1 
gage blocks in a temperature-controlled laboratory. The maximum variation in temperature from 68°F is  1°F. 
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The gage blocks and micrometer were allowed to stabilize, so the difference between the two is estimated to be 
less than 0.1°F.

Repeatability

A skilled operator obtained 0 repeatability.

Master

The actual values of the gage blocks were used. The uncertainty in the calibration was 4 in which was taken 
from the calibration report which reported a 95% confidence level or k=2.
 
Resolution

The resolution of the micrometer is 100 in. To obtain the standard uncertainty we divide the resolution by two 
and then by the square root of three, or 100/23 = 29 in.

Uncertainty in Coefficient of Thermal Expansion

The standard uncertainty is calculated from the equation L = L  (68F - T)  , or
L = (1 in) (1F)(0.9 x 10-6/F)= 0.9 in.

Uncertainty in Temperature Difference between Master and Test

The uncertainty caused by the temperature difference between the master and the test is given by the equation L 
= L  T  , or L = (1 in) (0.1F)(6.5 x 10-6/F) = 0.6 in.

Table 9. Uncertainty Budget for Calibrating a (0 to 1) Inch Digital Micrometer
 

Uncertainty Source
Estimate 

(in)
Type Distribution Divisor

Standard 
Uncertainty (in)

Variance 
(in2)

Gage blocks 4 B Normal 2 2 4

Resolution 100 B Rectangular 23 29 841

Uncertainty of CTE 0.9 B Rectangular 3 0.52 0.27

Master/part 
temperature difference

0.6 B Rectangular 3 0.35 0.12

Summation 845

Combined Standard 
Uncertainty

29

Expanded Uncertainty 
(k=1.65)

48

An examination of the uncertainty budget shows that it consists of only one significant source, the resolution, 
which is a rectangular distribution. In fact, this single contributor is so large compared to the others that all of the 
other contributors could be safely ignored and the resolution could be entered as the sole uncertainty contributor 
in the budget. In cases like this we could express the expanded uncertainty as a function of the resolution: U = 
(1.65/(23))*R  0.48R. 
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For the purposes of CMC, it is acceptable to separate out the device contribution. In this case, separating out the 
resolution contribution would produce a CMC of 4.2 in with a statement such as “This value does not include 
the contribution from the device under test. This contribution is expected to be 0.6R.” 

Appendix A. Student’s t-Distribution

Value of tp() from the t-distribution for degrees of freedom  that defines an interval - tp() to + tp() that 
encompasses the fraction p of the distribution.

Fraction “p” in percentDegrees of 
freedom  68.27(a) 90.00 95.00 95.45(a) 99.00 99.73(a)

1 1.84 6.31 12.71 13.97 63.66 235.8

2 1.32 2.92 4.30 4.53 9.92 19.21

3 1.20 2.35 3.18 3.31 5.84 9.22

4 1.14 2.13 2.78 2.87 4.60 6.62

5 1.11 2.02 2.57 2.65 4.03 5.51

6 1.09 1.94 2.45 2.52 3.71 4.90

7 1.08 1.89 2.36 2.43 3.50 4.53

8 1.07 1.86 2.31 2.37 3.36 4.28

9 1.06 1.83 2.26 2.32 3.25 4.09

10 1.05 1.81 2.23 2.28 3.17 3.96

11 1.05 1.80 2.20 2.25 3.11 3.85

12 1.04 1.78 2.18 2.23 3.05 3.76

13 1.04 1.77 2.16 2.21 3.01 3.69

14 1.04 1.76 2.14 2.20 2.98 3.64

15 1.03 1.75 2.13 2.18 2.95 3.59

16 1.03 1.75 2.12 2.17 2.92 3.54

17 1.03 1.74 2.11 2.16 2.90 3.51

18 1.03 1.73 2.10 2.15 2.88 3.48

19 1.03 1.73 2.09 2.14 2.86 3.45

20 1.03 1.72 2.09 2.13 2.85 3.42

25 1.02 1.71 2.06 2.11 2.79 3.33

30 1.02 1.70 2.04 2.09 2.75 3.27

35 1.01 1.70 2.03 2.07 2.72 3.23

40 1.01 1.68 2.02 2.06 2.70 3.20

45 1.01 1.68 2.01 2.06 2.69 3.18

50 1.01 1.68 2.01 2.05 2.68 3.16

100 1.005 1.660 1.984 2.025 2.626 3.077

 1.000 1.645 1.960 2.000 2.576 3.000

(a)For a quantity z described by a normal distribution with expectation z and standard deviation , the 
interval z  k encompasses p = 68.27, 95.45, and 99.73 percent of the distribution for k = 1, 2, and 3 
respectively.
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Appendix B. Sensitivity Coefficient Example

The sine plate formula is:
 = sin-1(x/l)

The relationships between the angle in degrees, minutes, and seconds are:
Minutes (‘) = Degrees x 60
Seconds (“) = Minutes x 60

The sine plate length, l, is 10 in.
The gage block height is x. Let x be 0.03000 in.

1 = sin-1(0.03000/10) = 0.171888° = 10.31326’ = 618.800”
Let us change the height by a gage block uncertainty of 5µin and recalculate.

2 = sin-1(0.030005/10) = 0.171916° = 10.31498’ = 618.898”
The change in angle produced by a 5µin change in gage block height is:

2-1 = 0.09848”
The change per microinch is:

0.09848/5 = 0.02 seconds per microinch
This is the gage block height sensitivity coefficient value for a nominal angle of 10’.

(For the standard uncertainty in gage block combination in Table 8, we divided the 5 µin value by 3 and then 
multiplied times 0.02 to get 0.06, which was rounded up to 0.1 second.)

To find the sine plate length sensitivity coefficient, the same process is used, except holding x constant and 
calculating the angle first for a sine plate length of 10 in and then for 10 in plus 200 µin.
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